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Rational inversion of the Laplace transform
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Abstract. This paper studies new inversion methods for the Laplace transform of vector-valued functions
arising from a combination of A-stable rational approximation schemes to the exponential and the shift
operator semigroup. Each inversion method is provided in the form of a (finite) linear combination of the
Laplace transform of the function and a finite amount of its derivatives. Seven explicit methods arising
from A-stable schemes are provided, such as the Backward Euler, RadauIIA, Crank-Nicolson, and Cala-
han scheme. The main result shows that, if a function has an analytic extension to a sector containing the
nonnegative real line, then the error estimate for each method is uniform in time.

Introduction

The numerical inversion of the Laplace transform has been studied by many authors
over the years due to the wide array of applications of the Laplace transform tech-
nique to different areas of science. If u : [0,∞) → X , where X is a Banach space
and assuming that its Laplace transform û(λ) := ∫ ∞

0 e−λt u(t) dt exists for some
λ ∈ C, then it can be shown that there exist an ω ∈ R such that û is analytic on
Hω := {λ ∈ C : Re(λ) > ω}, see [1, Sec 1.4]. The problem is to find an operator
Ln [̂u, t] such that limn→∞ Ln [̂u, t] = u(t) for each t ≥ 0 and, more importantly, to
estimate the error ‖Ln [̂u, t] − u(t)‖ in the Banach space norm.

The inversion problem for the Laplace transform has been cataloged by some authors
as more of an art than a science because most methods use several parameters that need
to be adjusted in order to obtain reasonable results or because most methods work only
for very particular functions, cf. [8]. One of the most successful methods for inverting
the Laplace transform is Talbot’s method, also known as the quadrature method (see
[29,44,48,49]). Before the methods presented in this paper, the quadrature method and
the Post-Widder method were the only available methods for inverting the Laplace
transform of Banach-space-valued functions. The quadrature method assumes that the
Laplace transform û has an analytic extension beyond Hω. However, it is not hard to
find functions whose Laplace transform does not have an analytic extension beyond
Hω. On the other hand, the Post-Widder inversion method defines an operator Ln using
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the first n −1 derivatives of û with order of convergence t√
n

, making the Post-Widder
inversion method to be extremely slow as n → ∞.

This paper studies error estimates for a new class of rational Laplace transform
inversion procedures by defining an operator Ln which uses the information of û(λ)
and the first n−1 derivatives of û on Hω for any continuous and exponentially bounded
function u with values in a Banach space X with an order of convergence t

nm for some
m ∈ N. In fact, for each m ∈ N we can find an approximation method for the inverse
Laplace transform with order of convergence t

nm . Therefore, one can keep the order
of derivatives of û low by considering m big enough and, at the same time, there is no
requirement for an analytic extension of û beyond its natural domain Hω. The main
contribution of the present paper is the characterization of those functions for which
the inversion methods provide time-independent error estimates, i.e., with rate of con-
vergence 1

nm for any t ∈ [0,∞). The rational Laplace transform inversion methods are
derived from the theory of rational approximation methods for operator semigroups
using results due to Hersh and Kato [16], Brenner and Thomée [5], Larsson, Thomée,
and Wahlbin [30], Hansbo [15], and Crouzeix, Larsson, Piskarev, and Thomée [7] (see
also [24,25] and [45]). They first appear as an example of rational approximations to
bi-continuous semigroups in [19].

The first section of this work compiles the results concerning rational approxima-
tions of operator semigroups emphasizing the approximation results for the shift semi-
group et∂ on Banach spaces X of continuous functions u with the sup-norm. Section 1
contains the main results concerning the error analysis for the inversion of the Laplace
transform via A-stable rational approximations to the exponential. Sections 2, 3, and
4 implement different rational inversion schemes associated to Subdiagonal Padé
approximants, Restricted Padé approximants, and Composite Exponential approxi-
mations, respectively. The last section provides a comparison of the rational inversion
Laplace transform method with the quadrature method as well as some applications
to differential equations with numerical examples.

1. Rational approximation of operator semigroups

In this section we compile the results concerning rational approximation of operator
semigroups needed for the rational Laplace transform inversion method.

Let r = P
Q be an A-stable rational approximation to the exponential function of

order m, i.e., P and Q are polynomials with p := deg(P) ≤ deg(Q) =: q, and

(i) |r(z)− ez | ≤ Cm |z|m+1 for |z| sufficiently small, and
(ii) |r(z)| ≤ 1 for Re(z) ≤ 0.

It is a well-known result of Padé [34] that m ≤ p+q for all rational approximations
to the exponential function. The rational approximations of maximal order m = p +q
are called Padé approximations. They are of the form r{p,q} = P

Q , where
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P(z) =
p

∑

j=0

(m − j)!p!
m! j !(p − j)! z j and Q(z) =

q
∑

j=0

(m − j)!q!
m! j !(q − j)! (−z) j . (1)

As shown in [10], Padé approximations are A-stable if and only if q − 2 ≤ p ≤ q.
Another class of rational approximations to the exponential function are the restricted
Padé approximants

r{n}(z) =
∑n

j=0(−1)n L(n− j)
n (1/b)(bz) j

(1 − bz)n
, (2)

where Ln denotes the nth Laguerre polynomial Ln(x) = ∑n
j=0(−1) j

(n
j

) x j

j ! . They are
of order m = n + 1 for suitable b ∈ R. It was shown by G. Wanner, E. Hairer, and
S. P. Nørsett [47] (see also [14]) that the only A-stable restricted Padé approximants
of order m = n + 1 are r{1}, r{2}, r{3}, and r{5}.

LEMMA 1. If r is an A-stable rational approximation to the exponential of order
m ≥ 1, then |rn( t

n z)− etz | ≤ Cmtm+1 1
nm |zm+1| for Re(z) ≤ 0 and t ≥ 0.

Proof. By the binomial formula, |rn( t
n z) − etz | = |rn( t

n z) − (e
t
n z)n| =

∣

∣

∣

∑n−1
j=0 r( t

n z)n−1− j (e
t
n z) j

∣

∣

∣ · |r( t
n z)− e

t
n z | ≤ nCm | t z

n |m+1 = Cmtm+1 1
nm |z|m+1. �

The papers [5,7,16], and [30] contain some of the main results for rational approx-
imation schemes V (t) := r(t A) for strongly continuous operator semigroups T (t) =
et A generated by a linear operator A with domain D(A) and range in a Banach space X,
where r is an A-stable rational approximation to the exponential function of order m.

It is one of the key results in the approximation theory for operator semigroups (The-
orem 2 below) that Lemma 1 holds if z is replaced by the generator A of a bounded
strongly continuous semigroup T (t) = et A on a Banach space X; i.e.,

∥

∥

∥

∥

rn
(

t

n
A

)

u − et Au

∥

∥

∥

∥

X

≤ C̃mtm+1 1

nm
‖Am+1u‖X (3)

for all u ∈ D(Am+1). Moreover, if r is an A-stable approximation to the exponential,
then rn( t

n A)u −et Au → 0 for all u ∈ X if and only if the operators V (t) := r(t A) are
stable; i.e., there existω, M ≥ 0 such that‖V n( t

n )‖ ≤ Meωt for each n ∈ N0 and t ≥ 0.
This follows from the celebrated result of Lax and Richtmyer [28] and, in final form,
given by Chernoff in [6] (see also [11]) which asserts that if {V (t); t ≥ 0} ⊂ L(X) is
an approximation scheme with V (0) = I and V ′(0+)u = Au for all u in a dense set
D ⊂ D(A), then (i) V (t) is stable if and only if (ii) limn→∞ V n( t

n )u = T (t)u for all
t ≥ 0 and u ∈ X.

Approximation schemes V (t) = r(t A) defined by A-stable rational approximation
r to the exponential of order m ≥ 1 were investigated in the ground-breaking papers of
Hersh and Kato [16] and Brenner and Thomée [5]. The following theorem summarizes
the results obtained in [5].



438 P. Jara et al. J. Evol. Equ.

THEOREM 2. Let A be the generator of a strongly continuous semigroup T (t)with
‖T (t)‖ ≤ Meωt for some M, ω > 0. If V (t) := r(t A) for some A-stable rational
approximation r to the exponential or order m ≥ 1, then V (·) may not be stable.
However, there are constants Cm, κ such that for all t ≥ 0

∥

∥

∥

∥

rn
(

t

n
A

)∥

∥

∥

∥L(X)
≤ Cm M

√
neωκt .

If k = 0, 1, . . . ,m + 1 with k �= m+1
2 , then there are Cm > 0 (depending only on r)

such that
∥

∥

∥

∥

rn
(

t

n
A

)

u − T (t)u

∥

∥

∥

∥

X

≤ Cm Mecωt t k
(

1

n

)β(k)

‖Aku‖X

for every t ≥ 0, n ∈ N, and u ∈ D(Ak), where

β(k) :=
{

k − 1
2 if 0 ≤ k < m+1

2 ,

k m
m+1 if m+1

2 < k ≤ m + 1.

If k = m+1
2 , then for every t ≥ 0, n ∈ N, and u ∈ D(A

m+1
2 ),

∥

∥

∥

∥

rn
(

t

n
A

)

u − T (t)u

∥

∥

∥

∥

X

≤ Cm Meωt t
m+1

2

(

1

n

)m/2

ln(n + 1)‖A
m+1

2 u‖X.

REMARK 3. (i) The theorem above extends to generators of bi-continuous
semigroups and C-regularized semigroups, see [18–20]. In particular, Theorem 2
applies to the shift semigroup on the space X of bounded and continuous func-
tions with values in a Banach space X denoted by Cb(R

+, X) with sup-norm, in
which case the generator ∂ := d

ds is not densely defined.
(ii) The error estimates given in Theorem 2 extend to initial values in a continuum

of intermediate spaces between the Banach space X and the domain of the nth
powers of generators of strongly continuous semigroups, see [25].

(iii) The estimates are sharp for the shift semigroup on X = Cb(R
+, X) given by

T (t)u : s → u(s + t) with r(z) = 2+z
2−z (Crank-Nicolson), see [19].

(iv) It is shown in [5] that if an A-stable rational approximation r satisfies
(a) |r(is)| < 1 for s ∈ R − {0} and |r(∞)| < 1,
(b) r(is) = eis+ψ(s) with ψ(s) = O(|s|q̃+1) for positive integer q̃ as s → 0,
(c) Reψ(s) ≤ −γ s p̃ for |s| ≤ 1 and some even integer p̃ ≥ q̃ + 1,

then ‖rn( t
n A)‖L(X) ≤ Cm Mn(

1
2 − q̃+1

2 p̃ )eωκt and Theorem 2 holds with β(k)
replaced by

β∗(k) := k
q̃

q̃ + 1
+ min

{

0,

(

k − 1

2
(q̃ + 1)

) (

1

q̃ + 1
− 1

p̃

)}

.

(v) The first subdiagonal Padé approximants r{ j−1, j} are of order m = 2 j − 1 and
(iv) holds with p̃ = 2 j and q̃ = 2 j − 1, see [5]. In particular,

∥

∥

∥

∥

rn
(

t

n
A

)∥

∥

∥

∥L(X)
≤ Cm Meωκt
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Figure 1. Logarithmic error log10(E(n, t, u)) for different schemes
provided by Padé approximants and the quadrature method U80
(see Table 1 of [39]) for the approximation of the solution u of (16)
for t ∈ [0, 4]

for all t ≥ 0 and β∗(k) = k m
m+1 for 0 ≤ k ≤ m + 1, k �= j ; i.e., the subdiagonal

Padé schemes are stable.
(vi) The restricted Padé approximant r{2} (Calahan) has order m = 3 and (iv) holds

with p̃ = 4 and q̃ = 3. Thus, rn{2}(
t
n A) is stable and β∗(k) = 3k

4 , [5].
(vii) The restricted Padé approximant r{3} has order m = 4 and (iv) holds with p̃ = 6

and q̃ = 4. In particular, rn{3}(
t
n A) is O( 12

√
n) and β∗(1) = 3

4 , see [5].
(viii) For A-stable rational approximation schemes for which r(t A) is stable, the factor

ln(n + 1) can be removed. See [12] and Corollary 4.4 in [25].
(ix) A precise estimate for the constant Cm = C(rm) for an A-stable approximation

rm to the exponential of order m is an open problem. A preliminary result can
be found in Lemma III.8 of [40]. Moreover, numerical evidence suggests that
Cm → 0 as m → ∞, see Fig. 1 for n = 1.

Time-independent convergence estimates for A-stable rational approximations can
be obtained for bounded analytic semigroups as attained by Larsson, Thomée, and
Wahlbin [30] and Crouzeix, Larsson, Piskarev, and Thomée [7] (see also [45]). Their
results are summarized in the following theorem.

THEOREM 4. Let A be the generator of an analytic semigroup T (t) on X with
‖T (t)‖L(X) ≤ M (t ≥ 0). If r is an A-stable rational approximation to the exponential
of order m ≥ 1, then there is a constant Cm satisfying
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(a) ‖rn( t
n A)‖L(X) ≤ Cm M for t ≥ 0, and

(b) ‖rn( t
n A)u − T (t)u‖X ≤ Cm M

( t
n

)m ‖Amu‖X for t ≥ 0, u ∈ D(Am).
(c) If |r(∞)| < 1 then ‖rn( t

n A)u − T (t)u‖X ≤ Cm M 1
nm ‖u‖X for t ≥ 0, u ∈ X.

Even though A-stable rational approximations r are stable for analytic semigroups
T (t) generated by A, the convergence rn( t

n A)u → T (t)u can be arbitrarily slow for
non-smooth initial data u ∈ X if |r(∞)| = 1 (e.g., Crank-Nicolson). The stabilization
of rational approximation schemes for non-analytic strongly continuous semigroups
was investigated by McAllister and Neubrander in [31].

Let X be a Banach space. We denote by Cb(R
+, X) the Banach space of bounded and

continuous functions from R
+ into X and C0(R

+, X) := {u ∈ Cb(R
+, X) : u(∞)= 0}.

Let 	θ be the sector {z ∈ C\{0} : |arg(z)| < θ}, H(	θ , X) the space of all analytic
functions u : 	θ → X , and Cub(	θ , X) the space of all bounded, uniformly con-
tinuous functions from 	θ into X . For a proof of the following statements, see [2]
and [19].

PROPOSITION 5. The shift semigroup T (t)u : s → u(s + t) is bi-continuous on
X = Cb(R

+, X), strongly continuous on X = C0(R
+, X), and bounded and analytic

on X = Cub(	θ , X) ∩ H(	θ , X).

2. Rational Laplace transform inversion

This section shows that approximation methods for semigroups of operators yield
sharp inversion methods for the Laplace transform. This follows by applying the results
of Theorem 2 and Remark 3 to the shift semigroup T (t)u : s → u(t+s)with generator
A = ∂ := d/ds on the spaces of continuous functions described in Proposition 5. The
operator ∂ is always considered on its maximal domain; i.e., D(∂) = {u ∈ X : u′ ∈ X}.

Let X be a Banach space. Consider the shift semigroup T (t)u : s → u(t + s) on
X = C0(R

+, X) (or Cb(R
+, X) or Cub(	θ , X)). Then, by Proposition 5, T (t) is a

strongly continuous (bi-continuous, analytic) semigroup with generator ∂ = d/ds,
where D(∂) = {u ∈ X : u′ ∈ X} and the resolvent operator is denoted by R(λ, ∂) :=
(λ− ∂)−1. Since

R(λ, ∂)u =
∫ ∞

0
e−λt T (t)u dt =

∫ ∞

0
e−λt u(t + ·) dt,

it follows that

R(λ, ∂)u(0) =
∫ ∞

0
e−λt u(t) dt = û(λ)

(the Laplace transform of u). Consequently,

R(λ, ∂)n+1u(0) = (−1)n

n! R(λ, ∂)(n)u(0)

= (−1)n

n!
∫ ∞

0
e−λt (−t)nu(t) dt = (−1)n

n! û(n)(λ).
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Now, let r(z) = P(z)
Q(z) be an A-stable rational approximation to the exponential func-

tion of order m ≥ 1. Then, using partial fraction decomposition, there exist constants
B0, B{1,i, j}, bi ∈ C with Re(bi ) > 0, and ri ∈ N such that

r(z) = B0 +
s

∑

i=1

ri
∑

j=1

B{1,i, j}
(bi − z) j

.

Thus, for each n ∈ N, there exist constants B{n,i, j} ∈ C such that

rn(z) = Bn
0 +

s
∑

i=1

nri
∑

j=1

B{n,i, j}
(bi − z) j

. (4)

In particular,

rn
(

t

n
∂

)

u(0) = Bn
0 u(0)+

s
∑

i=1

nri
∑

j=1

B{n,i, j} R

(

bi ,
t

n
∂

) j

u(0)

= Bn
0 u(0)+

s
∑

i=1

nri
∑

j=1

B{n,i, j}
(n

t

) j
R

(

nbi

t
, ∂

) j

u(0)

= Bn
0 u0 +

s
∑

i=1

nri
∑

j=1

B{n,i, j}
(n

t

) j (−1) j−1

( j − 1)! û( j−1)
(

nbi

t

)

,

where u0 := limλ→∞ λû(λ) = u(0). Since T (t)u(0) = u(t), it follows that the
approximation error

Em(n, t, u) :=
∥

∥

∥

∥

∥

∥

Bn
0 u0 +

s
∑

i=1

nri
∑

j=1

B{n,i, j}
(n

t

) j (−1) j−1

( j − 1)! û( j−1)
(

nbi

t

)

− u(t)

∥

∥

∥

∥

∥

∥

=
∥

∥

∥

∥

rn
(

t

n
∂

)

u(0)− u(t)

∥

∥

∥

∥

=
∥

∥

∥

∥

rn
(

t

n
∂

)

u(0)− T (t)u(0)

∥

∥

∥

∥

can be estimated by

Em(n, t, u) ≤
∥

∥

∥

∥

rn
(

t

n
∂

)

u − T (t)u

∥

∥

∥

∥∞
:= sup

s∈[0,∞)

∥

∥

∥

∥

rn
(

t

n
∂

)

u(s)− T (t)u(s)

∥

∥

∥

∥

=
∥

∥

∥

∥

rn
(

t

n
∂

)

u − T (t)u

∥

∥

∥

∥

X

. (5)

Thus, the semigroup results of Theorems 2, Remark 3-(i), and Theorem 4 applied
to the shift semigroup on the Banach spaces of continuous functions C0(R

+, X), or
Cb(R

+, X), or Cub(	θ , X), respectively, yield the following result concerning the
inversion of the Laplace transform.

THEOREM 6. (Rational Laplace Transform Inversion) Let r be an A-stable
rational approximation to the exponential function of order m ≥ 1 with constants
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B0, B{1,i, j}, bi ∈ C, ri ∈ N as defined in (4). Let u ∈ X = C0(R
+, X) (or Cb(R

+, X)
or Cub(	θ , X)), let u0 := limλ→∞ λû(λ) = u(0), and consider

Em(n, t, u) :=
∥

∥

∥

∥

∥

∥

Bn
0 u0 +

s
∑

i=1

nri
∑

j=1

B{n,i, j}
(n

t

) j (−1) j−1

( j − 1)! û( j−1)
(

nbi

t

)

− u(t)

∥

∥

∥

∥

∥

∥

.

Then, the following statements hold.

(i) If |r(∞)| < 1 and u ∈ Cub(	θ , X) ∩ H(	θ , X), then for all t ≥ 0,

Em(n, t, u) ≤ Cm
1

nm
‖u‖∞.

(ii) If |r(∞)| = 1 and u, u(m+1) ∈ Cub(	θ , X) ∩ H(	θ , X), then for all t ≥ 0,

Em(n, t, u) ≤ Cmtm 1

nm
‖u(m)‖∞.

(iii) If u, u(k) ∈ Cb(R
+, X) for some 1 ≤ k ≤ m + 1, then for all t ≥ 0,

Em(n, t, u) ≤ Cmtk 1

nγ (k)
‖u(k)‖∞,

where γ (k) is given by β(k) or β∗(k) as defined in Theorem 2. In particular,

Em(n, t, u) ≤
{

Cmtm+1 1
nm ‖u(m+1)‖∞ if u, u(m+1) ∈ Cb(R

+, X),
Cmt 1

nβ
‖u(1)‖∞ if u, u(1) ∈ Cb(R

+, X),

for all t ≥ 0, where β ∈ [ 1
2 , 1) is given by β(1) or β∗(1) as defined in Theorem 2.

(iv) If V (t) := r(t∂) is stable on one of the spaces X of continuous functions con-
sidered in Proposition 5, then for all u ∈ X,

lim
n→∞ Em(n, t, u) = 0,

where the convergence is uniform on compact sets.

REMARK 7. In Theorem 6(iii), it seems to be unknown if there are rational schemes
for which the order of convergence is O( 1

nβ
) for some β ≥ 1 and all u with u, u(1) ∈

Cb(R
+, X).

Let Cb,ω(R
+, X) be the Banach space of continuous functions u from R

+ into X
for which ‖u‖ω,∞ := supt≥0 ‖e−ωt u(t)‖ < ∞. Since the norm of the shift semigroup
is bounded by eωt on Cb,ω(R

+, X), Theorem 2 yields also error estimates for rational
Laplace transform inversions for u ∈ Cb,ω(R

+, X).

3. Subdiagonal Padé inversion of the Laplace transform

To provide a first example of rational Laplace transform inversion procedures, con-
sider the subdiagonal Padé approximants r{s−1,s} := r with r(z) = P(z)

Q(z) , where P, Q
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are as in (1)). These Padé approximants are A-stable, of order m = 2s − 1, and the
statements of Theorem 4 (c) and the Remark 3-(iv) of Theorem 2 hold. It is known
(see, e.g., [14,41]) that r has s distinct poles bi with Re(bi ) > 0. Thus, by using partial
fraction decomposition,

r(z) =
s

∑

i=1

B{1,i,1}
bi − z

, (6)

where B{1,i,1} = P(bi )
∏

k �=i (bk−bi )
. If a rational function is of the form (3.1), then another

partial fraction argument yields that, for each n ∈ N,

rn(z) =
s

∑

i=1

n
∑

j=1

B{n,i, j}
(bi − z) j

, (7)

where the constants B{n,i,k} (1 ≤ i ≤ s, 1 ≤ k ≤ n) are inductively given by

B{n+1,i,1} =
n

∑

k=1

s
∑

j=1
j �=i

ak
i j

[

(−1)k+1 B{n,i,k} · B{1, j,1} + B{n, j,k} · B{1,i,1}
]

B{n+1,i,n+1} = B{n,i,n} · B{1,i,1} (8)

B{n+1,i,r} =

⎡

⎢

⎢

⎣

n
∑

k=r

s
∑

j=1
j �=i

B{n,i,k} · B{1, j,1} · ak−r+1
i j · (−1)k−r

⎤

⎥

⎥

⎦

+B{n,i,r−1} · B{1,i,1} for all 2 ≤ r ≤ n,

and where ai j := 1
b j −bi

. For the proof of (8) see [18, Lemma 3.2.4]. Thus, for a subdi-
agonal Padé approximation r to the exponential function of order m = 2s − 1 (s ≥ 1)
with given poles b1, b2, . . . , bs , Theorem 6 is applicable with B0 = 0 and B{n,i, j} given
in (8). Observe that (i) and (iv) of Theorem 6 are applicable since r(∞) = 0 and r(t A)
is stable for A = d/ds on all spaces X of continuous functions considered above (see
Remark 3-(v)). The numerical implementation of the subdiagonal rational Laplace
transform inversion method rely on the accuracy of the roots of the polynomial Q
for s ≥ 5. For different methods concerning the numerical approximation of zeros of
polynomials, we refer to [35,36], and the references therein. Symbolic tools of widely
available software such as Maple, Mathematica, or Matlab provide fast algorithms
to find the zeros of Q with arbitrary precision. However, in this case, it is important
to use algorithms which calculate the roots of Q with high precision since the error
growth of the recursion (7) is exponential as n increases. A simple Mathematica code
for the scalar-valued case can be found in [18]. For s = 1, 2, 3, 4, 11 (respectively
m = 1, 3, 5, 7, 21), the subdiagonal Padé inversions of the Laplace transform are as
follows.
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3.1. Backward Euler (Post-Widder) inversion (m = 1)

If s = 1 in (6), then m = 2s −1 = 1 and the subdiagonal Padé approximation r{0,1}
(Backward Euler) is given by

r(z) = 1

1 − z
.

Since rn(z) = 1
(1−z)n , (4) holds with s = 1, r1 = 1, b1 = 1, B0 = 0, B{n,1,n} = 1,

and B{n,1, j} = 0 for j �= n. Thus, Theorem 6 holds for m = 1 and

E1(n, t, u) :=
∥

∥

∥

∥

(−1)n−1

(n − 1)!
(n

t

)n
û(n−1)

(n

t

)

− u(t)

∥

∥

∥

∥

(9)

satisfies, for all t ≥ 0,

E1(n, t, u) ≤

⎧

⎪

⎨

⎪

⎩

C1t 1√
n
‖u(1)‖∞ if u, u(1) ∈ Cb(R

+, X)

C1t2 1
n ‖u(2)‖∞ if u, u(2) ∈ Cb(R

+, X),
C1

1
n ‖u‖∞ if u ∈ Cub(	θ , X) ∩ H(	θ , X).

Moreover, limn→∞ E1(n, t, u) = 0 for all u ∈ Cb(R
+, X) and the Backward Euler

approximations (9) retain essential structural characteristics of u (positivity, mono-
tonicity, convexity, etc.; see [17,26]). To see the connection between (9) and the
Post-Widder inversion

(−1)n

n!
(n

t

)n+1
û(n)

(n

t

)

, (10)

define U (t) := ∫ t
0 u(r) dr and ̂U (λ) := ∫ ∞

0 e−λtU (t) dt . Since ̂U (λ) = 1
λ

û(λ) it
follows that

(−1)n−1

(n − 1)!
(n

t

)n
̂U (n−1)

(n

t

)

=
n−1
∑

j=0

(−1) j

j !
(n

t

) j
û j

(n

t

)

=
∫ t

0

(−1)n

n!
(n

s

)n+1
û(n)

(n

s

)

ds.

By applying (9) to U and ̂U and by using (1.8) in [12], it follows that

E1(n, t,U ) :=
∥

∥

∥

∥

∫ t

0

(−1)n

n!
(n

s

)n+1
û(n)

(n

s

)

ds −
∫ t

0
u(s) ds

∥

∥

∥

∥

≤ 2t
1√
n
‖u‖∞.

Thus, for all u ∈ Cb(R
+, X), the Post-Widder inversion (10) converges “in the aver-

age” toward u at a rate of 1√
n

(see also [13]). It is known (see, e.g.,[1, Thm. 1.7.7]) that

the Post-Widder inversion (10) converges pointwise to u(t) for all u ∈ Cb,ω(R
+, X)

and all t ≥ 0; however, the convergence can be arbitrarily slow.
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3.2. Padé-{1,2} inversion (m = 3)

If s = 2, then m = 3 and the subdiagonal Padé approximation r{1,2} is given by

r(z) = 6 + 2z

6 − 4z + z2 =
2

∑

i=1

B{1,i,1}
bi − z

,

where b1,2 = 2 ± i
√

2, B{1,1,1} = −1 + i 5
√

2
2 , and B{1,2,1} = −1 − i 5

√
2

2 . Now (4)
holds for B0 = 0, ri = 1, and B{n,i, j} is obtained from (7) with s = 2. It follows that
Theorem 6 holds for m = 3 and that

E3(n, t, u) :=
∥

∥

∥

∥

∥

∥

2
∑

i=1

n
∑

j=1

B{n,i, j}
(n

t

) j (−1) j−1

( j − 1)! û( j−1)
(

nbi

t

)

− u(t)

∥

∥

∥

∥

∥

∥

(11)

satisfies the estimate

E3(n, t, u) ≤
{

C3tk 1
n3k/4 ‖u(k)‖∞ if u, u(k) ∈ Cb(R

+, X) and 1 ≤ k ≤ 4,
C3

1
n3 ‖u‖∞ if u ∈ Cub(	θ , X) ∩ H(	θ , X)

for all t ≥ 0. Moreover, limn→∞ E3(n, t, u) = 0 for all u ∈ Cb(R
+, X).

3.3. Radau IIA inversion (m = 5)

If s = 3, then m = 5 and the subdiagonal Padé approximant r{2,3} is given by

r(z) = 3z2 + 24z + 60

−z3 + 9z2 − 36z + 60
=

3
∑

i=1

B{1,i,1}
bi − z

,

where b1 = 3 − 31/3 + 32/3 ≈ 3.63, b2,3 = 3 − 1
2 32/3 + 1

2 31/3 ± 1
2 i

(

35/6) + 37/6
) ≈

2.68 ± 3.05i and B{1,i,1} = 60+24bi +3b2
i

∏

k �=i (bk−bi )
. Now (4) holds for B0 = 0, ri = 1, and

B{n,i, j} is given by (7) with s = 3. It follows that Theorem 6 holds for m = 5 and that

E5(n, t, u) :=
∥

∥

∥

∥

∥

∥

3
∑

i=1

n
∑

j=1

B{n,i, j}
(n

t

) j (−1) j−1

( j − 1)! û( j−1)
(

nbi

t

)

− u(t)

∥

∥

∥

∥

∥

∥

(12)

satisfies the estimate

E5(n, t, u) ≤
{

C5tk 1
n5k/6 ‖u(k)‖∞ if u, u(k) ∈ Cb(R

+, X) and 1 ≤ k ≤ 6,
C5

1
n5 ‖u‖∞ if u ∈ Cub(	θ , X) ∩ H(	θ , X)

for all t ≥ 0. Moreover, for all u ∈ Cb(R
+, X), limn→∞ E5(n, t, u) = 0.
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3.4. Padé-{3,4} inversion (m = 7)

The largest value of s for which all constants can be computed symbolically is
s = 4. Then, m = 7 and the subdiagonal Padé approximation r{3,4} is given by

r(z) = 4z3 + 60z2 + 360z + 840

z4 − 16z3 + 120z2 − 480z + 840
=

4
∑

i=1

B{1,i,1}
bi − z

,

where the roots of Q3,4 are given by b1,2 ≈ 3.213 ± 4.773i , b3,4 ≈ 4.787 ± 1.567i ,

and B{1,i,1} = 4b3
i +60b2

i +360bi +84
∏

k �=i (bk−bi )
. Now (4) holds for B0 = 0, ri = 1, and B{n,i, j} is

given by (7) with s = 3. It follows that Theorem 6 holds for m = 7 and that

E7(n, t, u) :=
∥

∥

∥

∥

∥

∥

4
∑

i=1

n
∑

j=1

B{n,i, j}
(n

t

) j (−1) j−1

( j − 1)! û( j−1)
(

nbi

t

)

− u(t)

∥

∥

∥

∥

∥

∥

(13)

satisfies, for all t ≥ 0,

E7(n, t, u) ≤
{

C7tk 1
n7k/8 ‖u(k)‖∞ if u, u(k) ∈ Cb(R

+, X) and 1 ≤ k ≤ 8,
C7

1
n7 ‖u‖∞ if u ∈ Cub(	θ , X) ∩ H(	θ , X).

Moreover, limn→∞ E7(n, t, u) = 0 for all u ∈ Cb(R
+, X).

Since the poles of r are given symbolically, all 4n coefficients B{n,i, j} (1 ≤ i ≤ 4, 1 ≤
j ≤ n) needed in (13) are, in principal, computable symbolically (error free). How-
ever, since in applications it is often difficult to handle û( j−1) for large j (i.e., j ≥ 3),
let us consider (13) for n = 2. In this case, the eight coefficients B{2,i, j} (1 ≤ i ≤
4, 1 ≤ j ≤ 2) are easily computable

B{2,i,1} =
4

∑

j=1
j �=i

2B{1,i,1} B{1, j,1}
b j − bi

, B{2,i,2} = B2{1,i,1},

and the 8-term inversion

E7(2, t, u) :=
∥

∥

∥

∥

∥

∥

4
∑

i=1

2
∑

j=1

B{2,i, j}
(

2

t

) j
(−1) j−1

( j − 1)! û( j−1)
(

2bi

t

)

− u(t)

∥

∥

∥

∥

∥

∥

. (14)

gives already reasonable results since 1/27 = 0.0078125. In order to get better approx-
imations while keeping the number of derivatives low, one has to increase the order m.

3.5. Padé-{10,11} inversion (m = 21)

If s = 11, then m = 21 and the subdiagonal Padé approximation r{10,11} is given
by

r(z) = P(z)

Q(z)
=

11
∑

i=1

B{1,i,1}
bi − z

,
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where P with deg(P) = 10 and Q with deg(Q) = 11 are as in (1) and where the
zeros bi of Q are given by b1,2 ≈ 5.46 ± 17.60i, b3,4 ≈ 9.23 ± 13.71i, b5,6 ≈
11.60 ± 10.15i, b7,8 ≈ 13.11 ± 6.72i, b9,10 ≈ 13.96 ± 3.34i, b11 ≈ 14.23, and
B{1,i,1} = P(bi )

∏

k �=i (bk−bi )
. For n = 2, the 22 coefficients B{2,i, j} (1 ≤ i ≤ 11, 1 ≤ j ≤ 2)

can be computed to any degree of accuracy and are given by

B{2,i,1} =
11
∑

j=1
j �=i

2B{1,i,1} B{1, j,1}
b j − bi

, and B{2,i,2} = B2{1,i,1}.

Consider the 22-term inversion

E21(2, t, u) :=
∥

∥

∥

∥

∥

∥

11
∑

i=1

2
∑

j=1

B{2,i, j}
(

2

t

) j
(−1) j−1

( j − 1)! û( j−1)
(

2bi

t

)

− u(t)

∥

∥

∥

∥

∥

∥

. (15)

Since 1/221 ≤ 0.0000005, Theorem 6 gives reasonably good results for n = 2 since

E21(2, t, u) ≤
{

C21tk 1
221k/22 ‖u(k)‖∞ if u, u(k) ∈ Cb(R

+, X) and 1 ≤ k ≤ 22,
C21

1
221 ‖u‖∞ if u ∈ Cub(	θ , X) ∩ H(	θ , X).

Clearly, the choice of m = 21 was arbitrary; i.e., if n = 2 and the subdiagonal Padé
inversion should have an approximation error E(n, t, u) of order 10−N , then m should
be an odd number larger than 10N/3.

4. Restricted Padé inversion of the Laplace transform

A second class of examples of rational Laplace transform inversion methods is pro-
vided by the A-stable restricted Padé approximants r{1} (Crank-Nicolson, m = 2) and
r{2} (Calahan, m = 3), where r{ j} is defined as in (2) (for a discussion of r{3} (m = 4)
and r{5} (m = 6), see [33]). In contrast to the subdiagonal Padé approximants with
m > 1, these approximants have only one single real pole. Therefore, their associated
Laplace transform inversion methods require the knowledge of û(λ) at real numbers
λ > 0.

4.1. Crank-Nicolson inversion (m = 2)

The Crank-Nicolson approximation

r(z) = 2 + z

2 − z
= −1 + 4

2 − z

is an A-stable Padé approximation to the exponential function of order m = 2. Let
u0 = limλ→∞ λû(λ) = u(0). Since

rn
(

t

n
z

)

=
n

∑

j=0

(

n

j

)

(−1)n− j 22 j
(n

t

) j 1
( 2n

t − z
) j
,
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it follows from Theorem 6 that E(n, t, u) :=
∥

∥

∥

∥

∥

∥

(−1)nu0 + (−1)n−1
n

∑

j=1

(

n

j

)

4 j
(n

t

) j 1

( j − 1)! û( j−1)
(

2n

t

)

− u(t)

∥

∥

∥

∥

∥

∥

satisfies, for all t ≥ 0,

E2(n, t, u) ≤

⎧

⎪

⎨

⎪

⎩

C2t 1√
n
‖u(1)‖∞ if u, u(1) ∈ Cb(R

+, X),

C2tk 1
n2k/3 ‖u(k)‖∞ if u, u(k) ∈ Cb(R

+, X) and 2 ≤ k ≤ 3,
C2

1
n2 ‖u(2)‖∞ if u, u(2) ∈ Cub(	θ , X) ∩ H(	θ , X).

For u ∈ Cub(	θ , X) ∩ H(	θ , X) the results can be improved by using Hansbo’s
stabilization methods [15]; for u, u(1) ∈ Cb(R

+, X) the results can be improved by
stabilizing the Crank-Nicolson scheme using the methods in [31].

4.2. Calahan inversion (m = 3)

The Calahan approximation

r(z) = B1 + B2

1 − bz
+ B3

(1 − bz)2

with b = 1
6 (3+√

3), B1 = 1−√
3, B2 = 3(−1+√

3), B3 = 3−2
√

3 is an A-stable
restricted Padé approximation of ez of order m = 3. Since

rn
(

t

n
z

)

=
n

∑

j=0

j
∑

k=0

(

n

j

)

Bn− j
1 B j−k

2 Bk
3

(

j

k

)

( n

bt

)k+ j 1

( n
bt − z)k+ j

,

it follows from Theorem 6 that

E3(n, t, u) :=
∥

∥

∥

∥

Bn
1 u0+∑n

j=1
∑ j

k=0 (
n
j)(

j
k)Bn− j

1 B j−k
2 Bk

3(
n
bt )

j+k (−1) j+k−1

( j+k−1)! û( j+k−1)( n
bt )−u(t)

∥

∥

∥

∥

satisfies

E3(n, t, u) ≤
{

C3tk 1
n3k/4 ‖u(k)‖∞ if u, u(k) ∈ Cb(R

+, X) and 1 ≤ k ≤ 4,
C3

1
n3 ‖u(3)‖∞ if u, u(3) ∈ Cub(	θ , X) ∩ H(	θ , X)

for all t ≥ 0. Moreover, the stability of the Calahan scheme, see Remark 3–(vi), yields
limn→∞ E3(n, t, u) = 0 for all u ∈ Cb(R

+, X).

5. Applications and numerical examples

In order to demonstrate the accuracy of the rational inversion formulas, we provide
in this section some numerical examples. First we compare the rational Laplace trans-
form inversion method with the quadrature method for a scalar problem of convolution
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type that was considered in [39]. Then, it will be shown how to approximate solutions
of scalar differential-difference equations, including the case of neutral differential-
difference equations where the quadrature method for inverting the Laplace transform
cannot be applied, by using the rational inversion of the Laplace transform method.
Finally, we show two applications to evolution equations by approximating solutions of
the abstract Cauchy problem u′(t) = Au(t), u(0) = x and the fractional abstract Cau-
chy problem in a general Banach space for generators A of C-regularized semigroups
and analytic semigroups, respectively. The semigroup approach has shown to be very
fruitful for solving partial differential equations (and evolution equations) by rewrit-
ing a PDE in the form of an abstract Cauchy problem, see for example [1,9,11,27],
or [38]. All the numerical implementations arising from rational approximations to
the exponential of order less or equal than seven were calculated analytically, while
the ones of higher order use double precision arithmetic for the calculation of the
associated coefficients of Theorem 6.

5.1. Comparison with quadrature methods in the scalar case

In [39], W. McLean, I. H. Sloan, and V. Thomée use the numerical inversion of
the Laplace transform provided by quadrature methods developed in [42] and [43]
in order to obtain time discretizations for certain parabolic integro-differential equa-
tions. Section 5.1 of [39] shows the error of the approximation by the numerical
inversion of the Laplace transform via the quadrature method to the solution u(t) =
e−t (cos(t)− sin(t)) of the integro-differential equation of convolution type

u′(t)+ 2u(t)+
∫ t

0
2u(s) ds = 0 for t > 0, with u(0) = 1. (16)

In this case, û(λ) = λ
λ2+2λ+2

. Table 1 and Table 2 of [39] shows that the numerical
approximation provided by the quadrature method is superior to the one obtained by
using a finite difference method. Figure 1 shows the logarithmic error of different
approximations obtained by using subdiagonal Padé schemes as well as the logarith-
mic error obtained when using the approximation by quadrature methods U80 to the
solution u of (16).

In this case, the approximation of u by using the Padé-{20, 21} scheme obtains
more than 30 decimal places of accuracy on the interval [0, 4] by adding 21 terms of

the form Bi û
(

t
bi

)

. Notice that this strongly suggests that the constants Cm → 0 as
m → ∞.

5.2. First-order linear differential-difference equations of retarded and neutral type

In order to show examples where the accuracy of the rational inversion of the
Laplace transform is time-dependent, we consider first-order linear differential-
difference equations of retarded type. For referencesand a comprehensive introduction
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Figure 2. Logarithmic error log10(E(n, t, u)) for different schemes
provided by Padé approximants for the approximation of the solu-
tion u of (17) for t ∈ [0, 4]

to differential-difference equations, see [4]. Let u be the solution of the differential-
difference equation of retarded type given by

u′(t) = u(t − 1) t > 0 (17)

u(t) = g(t) t ∈ [−1, 0],

where g ∈ C([−1, 0],R). Under suitable conditions on g, one obtains that the unique
solution u of (17) is k-times continuously differentiable on [−1,∞), see Thm. 3.1 of
[4]. Clearly, the solution of (17) can be obtained by recursively integrating (17) on the
intervals of the form [n, n + 1] for n ∈ N0. Furthermore, it can be shown that

û(λ) = e−λ ∫ 0
−1 e−λs g(s) ds + g(0)

λ− e−λ for Re(λ) > 0. (18)

Figure 2 shows the logarithmic error of the numerical approximation of the solution
u of (17) by the rational inversion of the Laplace transform with g(t) = 1

40320 (t
8 +

84t6 + 616t5 + 5950t4 + 41384t3 + 219268t2 + 773128t + 1363209). In this case,
u ∈ C8([−1,∞),R) but u /∈ C9([−1,∞),R). Therefore, we can use rational approx-
imations to the exponential up to order m = 7.

As a second example, consider the neutral delay differential equation

u′(t) = u′(t − 1) t > 0

u(t) = g(t) t ∈ [−1, 0], (19)
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Figure 3. Logarithmic error log10(E(n, t, u)) for different schemes
provided by Padé approximants for the approximation of the solu-
tion u of (19) for t ∈ [0, 4]

where g ∈ C([−1, 0],R). In this case the solution u of (19) is simply the periodic
extension of g over the intervals of the form [n, n + 1] for n ∈ N0 and under suitable
conditions over g, u ∈ Ck([−1,∞)). Furthermore, if g(−1) = g(0) then

û(λ) = e−λ ∫ 0
−1 e−λs g(s) ds

1 − e−λ for Re(λ) > 0. (20)

Figure 3 shows the logarithmic error of the numerical approximation to the solution
u of (19) by rational inversion of the Laplace transform with g(t) = −6t14 − 42t13 −
125t12 − 204t11 − 195t10 − 106t9 − 27t8 + t6. In this case, u ∈ C8([−1,∞),R)

but u /∈ C9([−1,∞),R). Therefore, we can consider rational approximations to the
exponential up to order m = 7.

REMARK 8. The quadrature methods for inverting the Laplace transform cannot
be applied to solutions u of neutral differential-difference equations, since in this case
the Laplace transform û has infinitely many poles on a vertical line (as in (20)) and
therefore there is no analytic extension of û into a sectorial region {λ : |arg(λ)| < θ}
of angle θ > π

2 .

5.3. Approximating solutions of the abstract Cauchy problem

Time discretization methods for evolution equations of convolution type provided by
the quadrature inversion method have shown to be very fruitful, see [32,42,43,45,46].
In order to show how to apply Theorem 6 for the approximation of solutions of the
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abstract Cauchy problem, we consider the theory of C-regularized semigroups. Let
C be a bounded and injective operator defined on X . A strongly continuous map W :
[0,∞) → L (X) is called a C-regularized semigroup or C-semigroup if W (0) = C
and W (t)W (s) = CW (t + s) for all t, s ≥ 0. A linear operator B : D(B) ⊆ X → X
is called the generator of W if Bx = C−1 limt→0

W (t)x−Cx
t , where D(B) denotes the

maximal domain of B in X . A C-semigroup W is said to be of type (M, ω) if there
exist M ≥ 1 and ω ∈ R such that ‖W (t)‖L (X) ≤ Meωt for all t ≥ 0. Theorem 3.4
of [9] asserts that if W is a C-regularized semigroup generated by B, x ∈ D(B) and
t ≥ 0, then W (t)x = Cx + ∫ t

0 BW (s)x ds. In this way, u(t) := W (t)x is a classical
solution of the abstract Cauchy problem

(ACPC )

{

u′(t) = Bu(t),
u(0) = Cx .

Moreover, if x ∈ D(Bk) for some k ∈ N, then u(t) := W (t)x ∈ Ck([0,∞), X), and
u(k)(t) = Bku(t). The concept of C-semigroups is a natural extension of strongly
continuous semigroups since a strongly continuous semigroup is an I -regularized
semigroup where I is the identity operator on X . Furthermore, it allows the study of
well-posed and ill-posed abstract Cauchy problems, see [9]. Generators of C-regular-
ized semigroups include generators of integrated semigroups as well as distributional
semigroups with important examples such as the Schrödinger operator � − V on
L p(RN ) for 1 ≤ p ≤ ∞ for suitable potentials V , see [21] and [37]. It can be shown
that if B is the generator of a C-regularized semigroup W of type (M, ω) then the
C-resolvent set defined by ρC (B) := {λ ∈ C : (λ − B) is injective and Im(C) ⊆
Im(λ − B)} is not empty. Furthermore, {λ : Re(λ) > ω} ⊆ ρC (B), the map λ →
R(λ, B)C := (λ − B)−1C is holomorphic from Re(λ) > ω into L (X), and the
Laplace transform of W satisfies that ̂W (λ) = R(λ, B)C for λ > ω, see [9, Prop.
17.2]. In this way, the approximation of solutions of (ACP)C when B generates a
C-regularized semigroup as discussed in Theorem 3.1 of [20] can be obtained directly
by applying Theorem 6 (iii) without the need of a functional calculus for generators
of C-regularized semigroups. An important example is given by the Backward Euler
scheme, i.e., r(z) = 1

1−z for Re(z) ≤ 0. Theorem 6(iii) asserts that if A generates a
C-regularized semigroup of type (M, ω), then

W (t)x = lim
n→∞ R

(

1,
t

n
A

)

Cx = lim
n→∞

n

t
R

(n

t
, A

)

Cx for all x ∈ X, (21)

where the limit is uniform on compact sets and is O(eωt t√
n
) as n → ∞ for x ∈ D(A).

Notice that if A generates a strongly continuous semigroup, then formula (21) becomes
Hille’s celebrated exponential formula.

As an example in which the solution has values in a Banach space, consider the
first-order hyperbolic partial differential equation given by
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∂v

∂t
(t, w)+ ∂v

∂w
(t, w) = 0 w ∈ (0, 1),

v(t, 0) = 0 t ≥ 0, (22)

v(0, w) = f (w) w ∈ (0, 1).

Let X := C0(0, 1) the space of continuous functions vanishing at r = 0 with the sup-
norm (or X = L1(0, 1) or X = L2(0, 1)). It is not hard to show that if A f := − d f

dw
for f ∈ Dom(A), then A generates a strongly continuous semigroup T on X (the
right shift semigroup), where Dom(A) := { f ∈ X : f is absolutely continuous on
[0, 1] with f ′ ∈ X and f (0) = 0}. Therefore, u(t) := T (t) f ∈ Cb(R

+,C0(0, 1))
(or Cb(R

+, L1(0, 1)) or Cb(R
+, L2(0, 1))) satisfies that u′(t) = Au(t) and u(0) = f

from which one obtains that the solution of (22) is given by v(t, w) := T (t) f (w).
Moreover,

R(λ, A) f (w) =
∫ w

0
e−λ(w−y) f (y) dy for w ∈ (0, 1) and Re(λ) ≥ 0. (23)

Since û(λ) = ̂T (λ) f = R(λ, A) f , it follows that û( j−1)(λ) = R(λ, A) j f . If we
denote eλ(w) := e−λw, ( f ∗ g)(w) := ∫ w

0 f (w− y)g(y) dy, and the nth convolution

power by g∗n := g ∗g ∗· · ·∗g (n-times), then û( j−1)(λ) = e∗ j
λ ∗ f . Theorem 6 asserts

that if we consider the Subdiagonal Padé approximants of order m = 2s − 1 given by
(7), then

v(t, w) = lim
n→∞

s
∑

i=1

n
∑

j=1

B{n,i, j}
(n

t

) j (−1) j−1

( j − 1)! e∗ j
nbi

t

∗ f (w), (24)

where the limit is in the sup-norm (L1 or L2 norm resp.) with the corresponding
error estimates for smooth initial data and where the norm of the error is in the sense
of the sup-norm (L1 or L2 norm resp.). Figure 4 shows the logarithmic error of the
approximation (24) to the solution u of (22) if f (w) = sin(πw) with t ∈ [0, 5] and
0 ≤ w ≤ 1 for the Backward Euler and Padé-{2, 3} schemes.

5.4. Approximating solutions of the fractional abstract Cauchy problem

Let α ∈ (0, 1). The fractional abstract Cauchy problem

Dα
t u(t) = Au(t) (25)

u(0) = x,

where Dα
t denotes the Caputo fractional derivative was studied by A. Kochubei in

[22] and [23]. If A generates a strongly continuous semigroup of type (M, ω), then
(25) has a unique solution u for which û(λ) = λα−1 R(λα,A)x for Re(λ) > ω, see
[3, Corollary 2.10]. It follows from Theorem 6-(iv) that if r is a subdiagonal Padé
approximant of order m = 2s − 1, then

lim
n→∞

s
∑

i=1

n
∑

j=1

B{n,i, j}
(n

t

) j (−1) j−1

( j −1)!
d j−1

dλ j−1

[

λα−1 R(λα,A)
]

∣

∣

∣

∣

λ= nbi

t

x =u(t), (26)
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Figure 4. Contour plot of the Logarithmic error log10(E(n, t, u)) for
the approximation (24) to the solution u of (22) if f (w) = sin(πw)
with t ∈ [0, 5] and 0 ≤ w ≤ 1 for the Backward Euler (left) and
Padé-{2, 3} (right) schemes with n = 5
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Figure 5. Logarithmic error log10(E(n, t, u)) for the approximation
(26) to the solution v of (27) for t ∈ [0, 10] with ‖ · ‖L2(0,π)

where the limit is uniform on compact sets and where the error is given by Theorem 6-
(iii). In this way, (26) provides a new method for the approximation of solutions of
the fractional abstract Cauchy problem (25).
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A classical example where the solution can be explicitly found is provided by the
fractional diffusion equation on the Hilbert space X := L2(0, π) given by

D
1
2
t v(t, w) = ∂2

∂w2 v(t, w) 0 < w < π, t > 0

v(0, w) = sin(w) 0 < w < π (27)

v(t, 0) = 0 = v(t, π) t > 0.

In this case, if A f := f ′′ (the second derivative) with D(A) := { f ∈ H2(0, π) :
f (0) = 0 = f (π)}, then A generates an analytic semigroup S(t) on X = L2(0, π)
for which u(t) := S 1

2
(t)x ∈ Cub(	θ , L2(0, π)) ∩ H(	θ , L2(0, π)) satisfies that

D
1
2
t u(t) = Au(t) where x = sin(·), see [3, Corollary 2.17]. Thus, (27) is equivalent

to (25) with α = 1
2 . Therefore, the solution v(t, w) = et erfc(

√
t) sin(w) of (27) can

be approximated uniformly in time by (26) where the limit is in the L2-sense and the
error norm is in the sense of L2 as well. Figure 5 shows the logarithmic error for the
approximation (26) to the solution of (27) when using some of the schemes of Sect. 3.
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